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Abstract--Based on the assumption that rocks are fractured simultaneously where the principle stresses reach 
the critical values of the modified Griffith criterion presented in this paper, a possible formation mechanism for 
upper crustal extensional wedges is discussed. Regarding the stress in the crust as the superposition of a lithostatic 
state, in which gravity and fluid pressure are included, and a complementary stress, which possibly implies the 
superposed tectonic stress, an elastic slab model of the upper crust above the brittle-ductile transition is 
considered. It is proposed that the strain discontinuity between the failed and unfailed regions in the slab may 
lead to large-scale curved normal faults, which cannot be explained by traditional fault theory. Three types of 
extensional wedges are produced, as the magnitude of superposed tensile stress decreases, remains unchanged 
and increases with depth. Slab length, tensile strength, friction cofficient and fluid pressure, significantly affect 
the geometry of extensional wedges and their boundary faults. 

INTRODUCTION Because of rigidity of upper  crustal rocks, a large 
amount  of crustal deformation,  especially the lateral 

THE traditional Andersonian fault theory, which is strain, cannot be elastic strain occurring before failure. 
based on the shear failure criterion and directions of Large deformation only occurs during the post-failure 
principle stresses, cannot explain normal faults revealed stage and within the failure region of the upper  crust. 
by seismic sections in sedimentary basins related to Consequently,  there must be strain discontinuity at the 
crustal extension, or field work on the Basin and Range boundary between the failure region, in which rocks are 
tectonics. Two features are found characterizing these fractured, and the rigid region, in which rocks remain 
normal faults, which are inconsistent with this theory, rigid and deform elastically but only by a small amount.  
First, the faults are usually curved in shape and at a low- The discontinuity could be identified in geological sec- 
angle (Wernicke 1981, Wernicke and Burchfiel 1983). tions as a fault. In this view, a fault is the boundary of the 
Second, the faults are accompanied by very complex failure region, whose geometry is mechanically deter- 
internal deformation within either hangingwall or foot- mined. 
wall (White et al. 1986, Wernicke & Axen 1988). Recent  Geological faults are usually thought to be restricted 
work on these normal faults explains them in terms of an to the upper  crust above the depth of the britt le-ductile 
extensional wedge (Xiao et al. 1991). However ,  the transition. Below that depth, the lower crust is assumed 
cause of these normal  faults is still controversial,  be- to be always ductile. The mechanical model that will be 
cause a mechanical insight into their development  has discussed here is assumed to be valid above that depth. 
not been provided. With these specifications, the paper  sets out, first, to 

In the geological definition of a fault, it is claimed that calculate elastic stresses in the upper  crust before fail- 
there must be relative displacement between two blocks, ure. Then,  a failure criterion is applied to determine the 
The complete description of a fault should include the failure region and finally the fault geometry.  
pre-failure and the post-failure stress-strain relationship 
of rocks in conjunction with a failure criterion. Such a 
description would, of course, be mechanically compli- MECHANICAL MODEL 
cated because these parameters  are t ime-dependent  and 
space-dependent .  It is therefore reasonable to look for a Lithostat ic  state 
theoretical approach that can at least model some fea- 
tures of rock deformation with fair precision, although Hafner  (1951) expressed the stresses in the crust to be 
the physical interpretation may be less precise. For this the superposition of stress caused by gravity and a 
purpose,  two assumptions are made.  (a) Tensile stresses complementary  stress, known as the principle of super- 
are applied to a homogeneous  elastic material;  failure position of stresses. The stress caused by gravity is 
happens simultaneously in the material  where the prin- calculated by assuming that lateral extension is pre- 
ciple stresses reach the critical value of a failure cri- vented. The relation, 
terion. (b) As soon as the failure takes place, the elastic 
energy in the material is released, and the inelastic strain tI x = O'y = v o ~ / ( 1 - v )  

along numerous  failure planes is assumed to dominate  is derived, where v is Poisson's ratio, ax and Oy are the 
the mechanical behaviour of the fractured material,  two horizontal stresses, and tl z is the vertical stress 
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caused by gravity. The horizontal stresses are only a (a)  L i t h o s t a t i c  S t a t e  
third of the vertical stress as the Poisson's ratio of rocks 
is usually taken to be 0.25. This is the case in which the L x 
effect of fluid pressure is not considered. / ~  l \ "  

When fluid pressure is in effect, the general form of ~ D 

stress-strain relationship should be as follows (see t I I I I  
Jaeger & Cook 1979), 

I E ~ : x = c ~ - v ( ° y + ° z ) - p ( E / 3 H )  I t  ] 

I EeY o,. v(c~ + oz) p (E /3H) ,  (1) 
Z 

( E e z  (s: v(o  x +  Oy) p ( E / 3 H )  
(b)  Complementary S t r e s s  

where H is a constant and p is fluid pressure. If fluid 
pressure is assumed to vary with depth, and is invariable 
in the horizontal directions, similarly letting ~'x = ~. = 0 [ : : ~  
as the lateral strain is prevented, we obtain, 

~,. = c{v = voz/(1 - v) + pE/(3(1  - v)H).  (21) 

Here the equilibrium and compatible equations are ¢: 
automatically satisfied by setting shear stresses to be Fig. 1. A slab model of the upper crust under tensile stress. The stress 
zero. Equation (2) is also a valid solution in the two- in the slab can be regarded as the superposition of (a) lithostatic state 

in which only gravity and fluid pressure are considered and (b) the 
dimensional case of plain strain, complementary stress. See text. 

According to the assumption made by Biot (1941,  
E / H  = 3(1-2v) .  Let v = 0.25, we finally obtain, 

{o,. = o~. = (1 + 2 a ) o J 3  is pulled along its right-hand edge by a horizontal tensile 
~ stress Oh (see Fig. lb). Letting oh change linearly with 

o: = pgz (3) the depth, 

a = pAL .  ol, = oo + kz ,  (4) 

where a represents the coefficient of fluid pressure. It is where o0 and k are constants. 
obvious that the standard state, o~ = o~. = ~z, originally The boundary conditions of the slab are as follows: on 
introduced by Anderson (1942), is possible only when a the left side of the slab, both o,, and o z are unaffected by 
= 1. For a normal gradient of fluid pressure, a = 0.4, the the tensile stress Oh and equal to the lithostatic pressure, 
horizontal stresses are 60% of the vertical stress. If a = (1 + 2a)pgz/3 and pgz, respectively; on the right side of 
0, it is the case where the effect of fluid pressure is not the slab ~,, is assumed to be the sum of lithostatic 
considered, pressure and the superimposed tensile stress oh, while o,  

On the other hand, because the compatible equations is still equal to the lithostatic pressure, pgz. At the 
and equilibrium equations are the linear differential surface, the stress o~ is always equal to zero, and the 
equations of stress components and fluid pressure, the shear stress r~, is also always equal to zero. At the 
superposition law is always valid. Therefore,  if a lithos- bottom, the slab suffers a constant shear stress r ~  = T, 
tatic state is defined, in which gravity and fluid pressure which is necessary to slab equilibrium, and the vertical 
are assumed to be the source of stresses and lateral strain for stress ~ = pgD along this boundary. 
is prevented, then, the stresses in the crust can be The complementary stresses for this two-dimensional 
described asthe superposition of the stresses oflithosta- problem can be found analytically. The Airy stress 
tic state and the complementary stresses. The lithostatic function U is, 
stresses have been found to be equation (3). It remains 

U = kxz~/ (6L)  + csoxz21(2L). (5) 
to determine complementary stresses. 

On the basis of the principle of superposition, we have 
Pre-Jailure elastic stre.ss the stresses in the slab, 

Hafner (1951) obtained the polynomial solution of a~ - k x z / L  + c~pc/L + (1 + 2a)pgz/3 (6) 
elastic stresses in a block under compression and shear- ~Jz = pgz (7) 
ing by using the Airy stress function. In this study, we 
consider a similar slab model with horizontal length L ~'.,-~ - - k z 2 1 ( 2 L )  - c6jzlL, (8) 
and vertical thickness D, but under tension and shear- where p is the density of crust, g is the gravity acceler- 
ing. We confine the discussions to two dimensions and ation. By equations (6), (7) and (8), it is indicated that 
set the co-ordinate axes, x and z, illustrated in Fig. 1 (a). the slab thickness D has no effect on elastic stresses. The 
The slab is assumed to be in lithostatic equilibrium when shear stress is independent of the horizontal co- 
no additional stress is superimposed on it. The slab ordinate. 
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Failure criterion mean value/~ = 0.75 is chosen. The density of crust is 
chosen to be 2550 kg m -3, which gives the usually 

A modified Griffith criterion is adopted here. As is adopted geopressure gradient, 25 MPa km -1. A normal 
generally accepted, the Griffith cracks in materials will fluid pressure gradient, 10 MPa km -1, is used in this 
be closed when the normal stress on the cracks reaches a study, which gives the coefficient, a = 0.4. 
critical value and the fracture will take place in the form 
of frictional slip along the closed crack surfaces, which 
could be described by the Coulomb criterion. Three EXTENSIONAL WEDGES 
physical parameters, tensile strength To, friction coef- 
ficient ~, and the critical stress o c control this process. In An elastic slab model has been introduced to describe 
this study, the critical stress oc is solved geometrically the pre-failure mechanical behaviour of rocks compos- 
from the tensile strength To and friction coefficient ~ by ing the upper crust. The rocks are fractured when the 
keeping the Mohr envelope of the Coulomb criterion shear stress reaches the critical value of (11) or (12). On 
with the friction coefficient/~ in tangent with the envel- the basis of the simultaneous failure hypothesis made at 
ope of the Griffith criterion with the tensile strength To the beginning of the paper, the failure region in the slab 
(Fig. 2). In this way, the critical stress Oc and the inherent would be determined in the combination of equations 
shear strength S O can be expressed in T O and/~ by solving (6)-(12). The following three cases of horizontal tensile 
the equations of the Griffith criterion, r e = 4T0(a + To), stress o h are considered: 
and the Coulomb criterion, r = So +/~o. We have, (a) the magnitude of Oh linearly decreases with depth; 

Oc = (1//-t 2 -- 1)T0 (9) (b) the magnitude of oh is invariable with the depth; 
(c) the magnitude of oh linearly increases with depth. 

So = (1//u +/u)To. (10) In case (a), OhShould vanish at the depth of brittle- 
ductile transition (25 km assumed in the following calcu- 

It is of note that if the inherent shear strength So in lations), by taking account of the fact that the ductile 
equation (10) is equal to that implied by the modified 
Griffith theory of McClintock & Walsh (1962), lower crust is incapable of bearing significant elastic 

stress. In case (c), oh is assumed to be equal to zero at the 
2To(1 + oJT0) 1/2 -/~Oc, the geometrically determined surface. 
normal stress at the tangent point in Fig. 2 is just the 
critical stress defined by McClintock & Walsh (1962). When o h is given, the elastic stresses in the slab are 

calculated from equations (6)-(8) on grids, 0.2x0.2 km. 
Therefore, the present modified Griffith failure criterion 
is not merely geometrical, but may have some mechan- The stresses are transformed into principal stresses. 
ical basis. The benefit of the present criterion is that the Then, the failure criterion, equations (11) and (12), is 
continuity of the Mohr envelope is preserved. By taking used to determine whether a grid area is fractured. If a 
account of the effect of fluid pressure, the failure cri- grid is fractured, the two conjugate orientations of 

failure are calculated in combination with the directions 
terion can be written in the form of effective normal 
stress and shear stress, of principal stresses. 

Figure 3 displays the results for the above three cases 
re = 4T0(~ + To) ff -< (1/A ,2 - 1)T0 (11) for an upper crustal slab, 25 km in the thickness and 50 

km in the length. The applied tensile stresses are, 
r = (1//~ +/~)T0 + / ~  ~ > (1//~ - 1)T0. (12) respectively, 

Four physical parameters To,/~, a and p in equations (a) Oh = --250 + 10Z (MPa, km) 
(6)-(12) must be given appropriate values. Estimates of (b) Oh = --65 (MPa) 
tensile strength To from laboratory experiments for (c) Oh =--15Z (MPa, km). 
crystalline rocks (Brace 1964, Jaeger & Cook 1979) lie The areas marked with failure orientations are the failed 
predominantly in the range 10-40 MPa. A mean value regions. Three types of extensional wedges with differ- 
T O = 20 MPa is chosen. The coefficient of friction/~ from ent styles of the boundary faults which separate the 
laboratory experiments (Byerlee 1978, Jaeger & Cook failed and unfailed regions are shown. 
1979) lie predominantly in the range of 0.5-1.0. Also a In the case of the magnitude of oh decreasing with 

depth, a wedge on a typical listric fault is exhibited (Fig. 
3a). The boundary fault intersects the surface at the dip 

"c about 45 ° and flattens to the dip about 10 ° below the 
depth of 15 km. In the case of the magnitude of Oh 
invariable with depth (Fig. 3b), the wedge is shown on a 
low-angle fault at the dip of 15 ° above the depth of 5 km, 
and on a steeper fault at the dip about 50 ° below 10 km. 
The boundary fault is convex upward. In the case of the 

$c magnitude of Oh increasing with depth, the geometry of 
! extensional wedge is completely changed. The boundary 

. ~ fault seems to be in the mirror relationship to that in Fig. 
o ~ ~r 3(a) and footwall is the failed region (Fig. 3c). 

Fig. 2. The Mohr envelope of the modified Griffith criterion. See text. The type of fault in Fig. 3(a), known as a detachment 
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Fig.  3. Geomet ry  of extensional wedges and their boundary faults calculated with different rules for tensile stress n h and 
T0 = 20 M P a , / ~  = 0.75,  ct = 0.4.  For  full details and discussion, see text. 

fault, was reported as prevailing in extensional basins deformation, White et al. (1986) proposed inclined sim- 
(e.g. Le Pichon & Barbier 1987, Etheridge et al. 1989, ple shear in the hangingwall to challenge the vertical 
William 1991, Xiao & Suppe 1992). The present mech- simple shear assumption under gravity collapse (e.g. 
anical model provides a physical insight into detachment Gibbs 1983) and gave a kinematic method to construct 
faulting. Another feature revealed by the present model bed from fault, or fault from bed. Footwall inelastic 
is that the vertical distribution of horizontal tensile stress response to lateral extension was first proposed by 
Oh controls whether the hangingwall or the footwail of Wernicke & Axen (1988) as another challenge to the 
boundary fault deforms inelastically depending on traditional assumption of hangingwall collapse. As the 
whether the extensional wedge is above or below the inelastic strain of an extensional wedge is concerned 
boundary fault. In the cases of Figs. 3(a) & (b), the with the post-failure stage, the internal deformation is 
hangingwallis the extensional wedge and will be capable generally very complex (e.g. Waltham 1989, McClay 
of inelastic response to the slab deformation, while in 1990). There may not be a single shear angle. If further 
the case of Fig. 3(c), the footwall is the extensional deformation of extensional wedge in the post-failure 
wedge, stage takes place along numerous failure planes, as 

Based on geometrical considerations of hangingwall assumed at the beginning of the paper, there are two 
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Fig. 4. Sensitivity of fault geometry to parameters, o h = -250+  10z (MPa, km), T o = 20 MPa, # = 0.75, ct = 0.4. (a) Only 
slab length is changed. (b) Only tensile strength is changed. (c) Only friction coefficient is changed. (d) Only fluid pressure is 

changed. 
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Fig.  6. A l a r g e - s c a l e  l o w - a n g l e  n o r m a l  faul t  in thc  B o h a i  G u l f  o f  N o r t h  C h i n a  ( s e i s m i c  p r o f i l c :  Y X  5 1 9 . 9 )  ( a )  O r i g i n a l  
s e i s m i c  prof i l e .  (b )  I n t e r p r e t e d  s e i s m i c  pro f i l e .  ( c )  R e s t o r e d  g e o l o g i c a l  s e c t i o n  at  t h e  e n d  o f  c x t e n s i o n .  T h e  d a s h e d  l ines  arc  

s p e c u l a t e d .  T h e  p r e d i c t e d  s h a p e  o f  t h e  fau l t  is m a r k e d  by  the  d o t t e d  l ine .  S e e  t ex t .  

main conjugate failure trajectories shown in Fig. 3. In parameters on the fault geometry? In Fig. 4, under the 
the case of Fig. 3(a), one failure trajectory at a dip of same tensile stress Oh as that in Fig. 3(a), the sensitivity 
about 45 ° exhibits a fair continuity which may develop of fault geometry to other parameters is illustrated. 
and become the second faults in the hangingwall. Figure 4(a) illustrates the fault geometry with slab 

length L = 50, 40, 30 and 20 km. The fault becomes 
steeper as the slab becomes shorter. When slab length 

DISCUSSION decreases to 20 km, nearly the whole slab will be frac- 
tured under this tensile stress. The tensile stress to 

The geometry of boundary faults of extensional produce a wedge certainly decreases with decrease in the 
wedges determines the basin structure, so is commer- length. Figure 4(b) exhibits the fault geometry with 
ciaily worthy of study. In Fig. 3, the vertical distribution tensile strength T 0 = 10, 20, 30 and 40 MPa. The fault 
of Oh is shown to control the geometrical style of exten- seems to be more sensitive to tensile strength when 
sional wedges. But what about the effects of other tensile strength is less than 20 MPa. As tensile strength 
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increases, the slab becomes strong and the wedge be- should be regarded as the extreme stress of the upper 
comes shallow. The effect of friction on fault geometry is crustal slab before the failure happens. It dies out as 
shown in Fig. 4(c), using friction coefficient/~ = 0.4, 0.6, soon as the failure takes place. Geophysically, there are 
0.8 and 1.0. It is clear that the friction coefficient only several possibilities to produce such a great tensile 
changes the geometry of the fault at depth. In Fig. 4(d), stress. The bending of an elastic upper crustal slab could 
fluid pressure is shown to drastically change the geom- provide enough tensile stresses to cause the fracture 
etry of the fault, especially when ct > 0.6. The tensile considered in the present model. The bending moment 
stress to drive a wedge will significantly decrease when a may be the result of an isostatic response to a load (e.g. 
high fluid pressure is presented. The effect of fluid Walcott 1970). When the slab moves on the non- 
overpressure on fault geometry is shown in Fig. 5. The spherical Earth surface as assumed in plate tectonics, the 
fault becomes steep where the fluid overpressure exists, membrane stress estimated by Turcotte & Oxburgh 

In the Bohai Gulf of North China, there are more than (1973) exceeds the maximum stress magnitude calcu- 
50 half-grabens discovered by petroleum exploration, lated in this paper. In a rift basin, the thermal stress 
Each half-graben called a depression is limited by a originating from heat transfer in the lithosphere also 
boundary fault (e.g. Li 1982). The mechanical model provides enough tensile stress (Reiter & Minier 1985). 
that has been discussed is applied to a typical seismic 
section demonstrating a large-scale low-angle normal Acknowledgements--I thank an anonymous reviewer and H. Xiao for 
fault developed in Yangxing Depression of the Gulf constructive and extensive comments on the manuscript, which helped 
(Fig. 6a). The reflection on the fault is strong a n d  c l e a r ,  me to compose the revised version. I also thank my colleague, Ms H. 

Four beds marked with the solid lines are interpreted Tang, for drawing the figures. 

(Fig. 6b). The fault intersects the surface at the dip about 
35 °. By backstripping the post-extension sediments on 
the top, the restored geological section at the end of 
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